Life Webs


1 Comment

Adam and Eve Were Cold

adam&eveThough we aren’t religious, my partner and I sometimes feel our permaculture project is creating a Garden of Eden. We’re busily planting one or two of “every tree that is pleasant to the sight, and good for food,” and if they all grow, and we live long enough, we can spend our golden years moseying around the garden, picking fruits and nuts without too much in the way of labor. (In the Bible, God thoughtfully does all the tree-planting before installing Adam in the garden.)

Of course, right now, in mid-January, our new, young fruit and nut trees, and even our “pleasant to the sight” trees, like dogwoods, are just sad little sticks. One of the persimmons seems to have disappeared altogether. After a warm October and a late first frost, we’ve been having a brutal winter, thanks to the polar vortex that descended on much of the Northeast and Midwest – the result of global warming, we’re told. We’ve stayed warm, bundled up in layers of clothing and running the furnace at full blast. (I don’t even want to see what the next heating bill will look like.)

Meanwhile, our chickens and rabbits are living happily out of doors or in unheated sheds. The chickens fluff up their feathers and go out to peck in the snow. The rabbits grow a little extra fur. I saw a deer ambling down the driveway the other day during a storm; he hadn’t even bothered shaking the snow off his back, though about a half-inch of it was piled on top of him.

Only Humans Need Heat

Why do only we need heat? Clearly, because we’re the only species that lives outside the ecological range it was adapted for. And why can we live outside our original niche? Because we have the technology to stay warm in the winter. Current thinking is that hominids, and probably homo sapiens in particular, evolved in equatorial East Africa, an area with mild climate. That’s why we have little body hair. Those who migrated out of the tropics did end up with less skin pigmentation (presumably to enhance synthesis of Vitamin D when less sunshine is available), but didn’t end up with significantly more hair (presumably because they could procure clothing, shelter and fuel).

All of which makes me wonder again about Adam and Eve. In the story, they eat from the tree of knowledge so they can be like gods – and it actually works; God says, “Behold, the man is become as one of us.” (The myth seems to date from polytheistic times, something I’d never noticed before.) But the experiment backfires. God throws them out of the garden before they can achieve immortality in addition to knowledge, and he condemns them to work for a living, among other things.

The first thing they notice after gaining knowledge and “becoming like gods” is that they are naked and need clothing, and they immediately sew clothes for themselves out of fig leaves. This is usually interpreted as the discovery of sexual modesty, and Adam and Eve’s transgressions are usually understood to have something to do with sex. But in the story, sex is a good thing. They had been told to be fruitful and multiply, and they had not been ashamed of their nakedness.

Here’s my thought: Adam and Eve were cold. They noticed they were naked because, with the knowledge they gained from the tree of knowledge, they ventured outside of the tropics for the first time. They had become like gods – they could go anywhere, do anything – but they now needed fig leaves to stay warm.

The last thing God does, before stationing angels and a flaming sword at the gate of Eden, is to give Adam and Eve a set of clothes that will keep them warm as they travel even farther from Eden. “Unto Adam also and to his wife did the Lord God make coats of skins, and clothed them.”

Advertisements


Leave a comment

Disturbances

This is a puzzle – a question, not an answer.

In our quest to heal the land – or our little piece of it, at any rate – my partner and I have been reading about permaculture and taking steps toward putting it into practice. We’ve planted ten fruit and nut trees to date, along with some berry bushes, and lots more are due to arrive this spring. We’re working on developing the “guilds” – assortments of plants to fill the other ecological niches – around them.

Permaculture (please excuse this abbreviated description of a very complex subject) is a way to accelerate the ecosystem succession (bare ground –> annual grasses –> perennials –> shrubs –> savanna –> climax forest) and then hold it at the savanna stage, which is considered the most varied and productive. At the moment, we’re working on hurrying along the bare ground and annual-grass areas and haven’t really dealt with the two-thirds of the land that is forested.

The name “permaculture,” and in fact the whole idea of sustainability, suggest that a balanced, self-equilibrating system is desirable and achievable. (Remember the “balance of nature” we learned about in school?)

But consider these quotes:

“Any level of secondary succession is determined by both those levels which precede and those levels which follow, the total ecosystem being the recurrent and regenerative pattern of youth and maturity. A dynamic balance is achieved through the periodic reestablishment of secondary succession initiated by fire. … It is the unnaturally protected, statically maintained forest, brush,  or grassland climax environment that is nonhomeostatic.” (Henry T. Lewis, “Patterns of Indian Burning in California: Ecology and Ethnohistory”)

“One of the most important recent ecological insights is the critical role of periodic disturbance – fire, flooding, insects, windstorms, to name a few – in maintaining species and habitat diversity. Rather than an anomaly that occasionally disrupts climax communities, disturbance is now viewed as the key recurring factor that keeps a mosaic of habitats in different stages of vegetation development  …. [and] assures the presence of plants and animals that characterize each phase of the change from open land to mature forest.” (Glenn Douglas Dreyer, “Understanding and Managing Vegetation Change”)

“Many wetland ecosystems are not only resilient to periodic disturbances but dependent on them. For example, the floodplains of rivers in the western United States used to support stands of cottonwood trees, which are now declining. The cottonwoods rely on spring flooding for the germination of their seeds. However, once irrigation reservoirs were built to capture the snowmelt, the floods ceased and so did cottonwood generation.” (C. Colston Burrell, “The Natural Water Garden”)

These ideas aren’t new – the quotes above are from the 1970s and 1990s. This is just the first time I’ve grappled with them. If a “stable” system is in fact dangerously unstable, maybe we shouldn’t be striving for a stable, self-perpetuating system but rather for a dynamic system made up of many small parts, in which each part goes through cycles of several hundred years.

Native American tribes seem to have managed this quite well, using fire as the agent of disturbance. But again (see previous post), their success was based on very low population density and a semi-nomadic lifestyle. Trying to apply these ideas to today’s densely populated, settled world is more than a little mind-boggling.